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Dirichlet-to-Neumann (DtN) boundary conditions for unbounded wave guides
in two and three dimensions are derived and analyzed, defining problems that are
suitable for finite element analysis. In the most general cases considered wave num-
bers may vary in arbitrary cross sections. The full DtN operator, in the form of
an infinite series, is exact. Nonunique solutions may occur when this operator is
truncated. Simple criteria for the number of terms in the truncated operator that guar-
antee unigue solutions are presented. A simple modification of the truncated operator
leads to uniqueness for any number of terms. Numerical results validate the perfor-
mance of DtN formulations for wave guides and confirm the criteria for unique-
NEeSS. (© 1998 Academic Press

1. INTRODUCTION

Problems in unbounded spatial domains are encountered frequently in various fiel
application, such as acoustics, aerodynamics, electromagnetics, geophysics, and me
ogy. Such problems pose a unique challenge to computation, since the unbounded rec
in appropriate for direct discretization. A variety of numerical methods for exterior proble
is reviewed in [16].

One commonly used method is to specify boundary conditions antgicial boundary
For a linear scalar problem, this procedure may be summarized as follows:

(a) Introduce an artificial boundag; which partitions the original unbounded domair
into two nonoverlapping regions: a bounded computational dofaamd its unbounded
complemenD.

(b) By analyzing the problem i, obtain a relation o3 (exact or approximate)
involving the unknown solution and its derivatives.

200

0021-9991/98 $25.00
Copyright© 1998 by Academic Press
All rights of reproduction in any form reserved.



DtN MAPS FOR UNBOUNDED WAVE GUIDES 201

(c) Use this relation as a boundary condition®nto obtain a well-posed problem
in Q.
(d) Solve the problem i® by computation, e.g., with the finite element method.

The relation obtained in step (b) and used as a boundary condition in step (c) is calle
artificial boundary conditio{ABC), or, in the context of wave problemspan-reflecting
boundary conditionThe latter name comes from the fact that such a boundary condit
is aimed at eliminating spurious reflection of waves fr@mwhich is otherwise present
[15].

A standard ABC which is often imposed #ris simply the condition at infinity. However,
in this case2 must be quite large, or else the ABC gives rise to spurious reflections «
pollutes the numerical solution [15]. On the other hand, a large computational don
is inefficient, leading to a large number of degrees of freedom. Therefore, the tren
recent work is to use a more accurate ABC Bnwhich enables the use of a smallel
computational domain. During the last two decades, many improved ABCs for vari
problems in unbounded domains were proposed (see reference in [15, 16]).

Most of the ABCs that have been proposed are local and approximate. A smaller nur
of exactnonlocal ABCs have been devised for various problems in unbounded dome
We mention the ABCs of Gustafssehal.[11, 28], Hagstronet al.[6, 29, 30 31, 32, 33],
Ting and Miksis [52], Givoli and Cohen [18], Grote and Keller [25, 27], and Tsyrétal.
[50, 53, 54].

For general linear elliptic problems, Keller and Givoli [19, 37] devised an exact ABC
an artificial boundary of a simple shape (e.g., a circle or a sphere), called the Dirichle
Neumann (DtN) boundary condition. Givoli, Keller, and others proposed combining C
boundary conditions with finite element methods as a general approach to solve li
elliptic problems in unbounded domains [14, 16, 19, 20, 23, 37, 47]. In [17], the met}
was extended to treat the hyperbolic linear wave equation.

The DtN method has been shown to possess good computational properties and
very effective in practice. It has been further analyzed and improved by Harari and Hug
[34, 35], Grote and Keller [26], and Malhotra and Pinsky [43]. The relation between the L
method and the mode-matching method has been established by Astley [1]. Other sch
that use DtN-related ideas for various problems and configurations, can also be foul
[3,7,10,12,13, 24, 39, 42, 44, 45, 55].

Similar to problems in exterior domains, unbounded acoustic wave guides [40, 49
ducts, require special treatment for computation. For example, a parallel plate wave ¢
is handled by a sequence of localized radiation conditions in [38], and by integral equat
in [41].

In the following, we derive DtN boundary conditions for unbounded wave guide
Boundary-value problems for unbounded acoustic wave guides in two and three dir
sions, and their cross-sectional eigenfunctions are presented in Section 2. DtN formula
for computing such problems with finite elements are presented in Section 3. Analys
these formulations shows the boundary conditions to be exact and presents simple
ria for selecting the number of terms to guarantee unique solutions. Local approximat
provide a basis for modified boundary conditions that are unique for any number of tel
Numerical results that validate the performance of the finite elements with DtN bounc
conditions in two and three dimensions and confirm the analytical results are present
Section 4. Conclusions are drawn in Section 5.
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FIG. 1. Anunbounded wave guide with rectangular cross section.

2. BOUNDARY-VALUE PROBLEMS FOR WAVE GUIDES

Let R c RY be ad-dimensional, semi-infinite, wave guide or duct. The regiomay
be partitioned into a bounded domdinand a unbounded cylind® =R\ 2 of uniform
cross sectiof. The cylinderD is aligned so that its axis and, consequently, the wave gui
walls are parallel to the-axis of a Cartesian coordinate system (see Fig. 1 for an exam
with a rectangular cross section). In two dimensions the wave guide is a semi-infinite ¢
of constant widthb (Fig. 2). The interface between the two regigasndD is the planar
surfaceB, normal to thez-axis and located a=2z,. ThusD={x | X € R,z > zp}. The
surface of the cylinder is denoted(Fig. 1). In two dimensions we position the coordinate
system so that the walls are aty =0 andy = b (Fig. 2). Consequently, the cross sectior
C is the interval O< y < b and the interfac® is the straight segment0y < b atz=z,.

In the regionR we wish to solve the Helmholtz equation

Au+Ku+f=0 (1)

related to time-harmonic acoustic waves, subject to boundary conditions on the boun
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FIG. 2. Anunbounded wave guide in two dimensions.
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of R and the radiation condition thatis bounded and does not contain incoming waves
z — oo. (For arigorous treatment of radiation conditions for wave guides see [46].) H
u:R — C is the spatial component of the acoustic pressurés the Laplace operator;
k € C is the wave number, Iln> 0; and f : R — C is a prescribed source distribution.
The artificial boundary is located so that=0 in D.

The boundary-value problem in theundedegion2 = R\ D may be solved by domain-
based computation. For this purpose, boundary conditions must be specified on the art
interfaces. In the following we derive such boundary conditions by the DtN method. Thr
cases of wall conditions op are considered,

au
— =0 Case 1 (2)
av
u=2~0 Case 2 3)
au
™ +nu=20 Case 3 4)
Vv

whereg—‘uJ is the normal derivative. The coefficientis related to impedance. Subsequer
derivations and analyses are performed for Case 3, when wall conditignsiead to be
specified, with Cases 1 (Neumann) and 2 (Dirichlet) taken as limitg 00 andn — oo,
respectively.

2.1. Cross-sectional Eigenfunctions in a Cylinder

Based on separation of variables for the Helmholtz equation, any solutidsétisfying
the radiation condition may be modally decomposed

U= AnYnexplipn(z - 20)), (5)
n=0
where
B

The modes are ordered wittescendingalues of the separation constapfs

The separation constants, or cross-sectional eigenvafiesd orthogonal eigenfunc-
tions Y, (y) and Y, (X, y) in two and three dimensions, respectively, are solutions of tl
cross-sectional eigenvalue problem

AYn+ (K= p2)Ya =0, inC @)
dY,

8—“ +nY,=0, ondC, (8)
v

wheredC is the boundary o€. There may be a finite number of propagating modes, f
which 12 > 0 (the first moden = 0, is always propagating, except in the case of Dirichle
wall conditions,n = 0, in which it is trivial); there may be a single cutoff mode, for whict
w2 =0; and there is an infinite number of evanescent modes, for wifjchO. In the most

general case considered, the wave number may vary in the cross section of the wave (
namely,k =k(y) andk=Kk(x, y) in two and three dimensions, respectively. The cros
sectional eigenvalue problem is then solved numerically for a finite number of eigenpe
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2.2. Constant Wave Number in a Rectangular Cross Section

In the special case of a constant wave number in a wave guide with rectangular cros:
tion 0< x <aand O< y < b, the cross-sectional eigenvalue problem is solved analytica

moo = k2 + 22 9)

27’)97")( e

Y == )
T Ja—e2aa—e2n

and form>1andn>1

(10)

These eigenfunctions are orthonormal

a rb
/ / Yk|YmndX dy: Skmdin- (13)
0 0

In the limits of Neumann and Dirichlet wall conditions, respectively, the eigenfunctions

1
lim Yoo = —, lim Ygo=0 14
n—0 00 \/% n—00 00 ( )
andform> l1landn > 1

lim Ymo = 4/ 2 cosijX lim Yo =0 (15)

10 mo = ab a ) P00 m0 =
lim Yon =4/ 2 cosrmy lim Yoo, =0 (16)

70 On = ab b s 700 Oon =

2 mz X nry . 2 . mmax . nmy

liMm Ymn = COS—— CO0S , im Ypyn= —sin——sin——-. (17
n—0 " Jab a b n—oo " /ab a b (17)
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This double index notation is converted to the single index notation of (5) by simply ordet
the modes with descending valuesuﬁf, starting withpo = oo (Or o = w11 for Dirichlet
wall conditions).

2.3. Constant Wave Number in a Strip

In the special case of a constant wave number in a strip of constant widih<0b, the
cross-sectional eigenvalue problem is solved analytically

| 2
Yo= /1 o2n® Y, uo=vVk+n? (18)

and forn > 1
2 nb\ 2 nry nb . /nny
Yh = = 1 — ) 1= -7
n \l<b> ( +(nn) > (COS( b ) o sm< b ,
19)
2
/ nmx
pn =4[k — (F) .
These eigenfunctions are orthonormal
b
/ YmYn dy:amw (20)
0
In the limits of Neumann and Dirichlet wall conditions, respectively, the eigenfunctions
1
limYy = —, lim Yo=0 21
imYo= " Jim Yo (21)
and forn > 1
. 2 nmw . 2 . nm
,I,'TOY” = \/;cosTy, nl|_>moo Yy =— b smTy. (22)

3. DIN FORMULATIONS

The DtN boundary condition is
u
0z
The two-dimensional map is obtained from the normal derivative of the modal represents
(5) on the interfacé8

—Mu onB. (23)

00 b

Mu(y, o) = —i Z““/ Ya(W)Ya(YHU(Y',20)dy, O<y<bh. (24)
n=0 0
(In Case 2, Dirichlet wall conditions, the first term is trivial.) The three-dimensional may
also obtained from the normal derivative of the modal representation (5) on the intBrfas

[ee]

Mu(x, y, Zo) = —i ZMn/Yn(Xs YYa(X, Y)u', y', zoydx'dy,  (x,y)eC.
C

n=0
(25)
(Note thatin Case 2, Dirichlet wall conditions, trivial terms exeludedrom the DtN map.
Thus, e.g., for Dirichlet wall conditions in a rectangular cross section with a constant w
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number, the first and largest eigenvalugfs=k? — (r/a)? — (/b)?, which isu?, in the
double-index notation.)
3.1. Uniqueness

To analyze the uniqueness of solutions to the DtN formulation we define the follow
functions:

e U is the solution of the original problem with the unbounded wave guide.in
e Uy is composed of two parts as

ur, xeQ
Uy =
us®,  xeD,

whereul" is the solution of the DtN problem ift andu$*is the solution of the problem in
D with u§*=ul" on 3.

e e:=U; — U, satisfies the homogeneous Helmholtz equatiof2 in D with homo-
geneous boundary data, and satisfies the radiation condition. Likewise for the com
conjugatee.

LEMMA. Let u be a solution of the homogeneous Helmholtz equakis 0) in D. If
lim [ ju2dC=0 (26)
thenu=0in D.

Proof. This is by a theorem due to Rellich [56, p. 56].

THEOREM. ui2”‘=u1|9 and hence thétN solution is unique, whenever the original
solution is unique.

Note. A cutoff mode of the original solution may vary by an arbitrary multiplicative
constant.

Proof. The first part of the proof is to establish the continuityugfon B, namely

ugt =yt (27)
auSXt — _Muext
0z 2
= —Muj"
auint
- (28)

where the first line follows from the definition of, the second line is the definition of
the DtN map M, the third line follows from the first and the last line from the definition o
ull. These continuity properties are inheritedeby

Showingthatlim_, . [ le|>2 dC = 0 completes the proof. By the Lemma, this implies the
e=0in D. By the continuity of and its normal derivative o, the DtN map is enforcing
homogeneous Dirichleind Neumann boundary conditions on the artificial boundéry
This over-specification of boundary data precludes non-trivial solutiofs in

Recall the modal representation of solutionddnEg. (5). To complete the proof we
show that lim_, [ |e|? dC =0 for each type of mode separately.
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For the evanescent modes this is straightforwgid:— 0 asz — oo sinceu? <0 and
hence lim_, . |e?dC=0.

For the cutoff mode:2 =0, so thak is independent of in D. Thus, the DtN boundary
condition for this case, a homogeneous Neumann boundary condition, is exact~ang
if up is unique.

For propagating modes we consider the variational form of the homogeneous prol
(homogeneous equation with homogeneous boundary dagg)imich may be written as

a(e,e) =0, (29)
where
a(w,u) = (Vw, Vu) — (w, k?u) + (w, Mu)z (30)

sincee is an admissible weighting function. Directing our attention to the imaginary p.
yields

0= -Ima(e, e
:/—Im{éMe}dC
B
1 _oe oe
= — — —e— . 1
7 /s (eaz e8;> dC (31)

This is a statement of zero energy flux through the artificial boundary. By contint
of e and its normal derivative on the artificial boundary, this expression may be relate
quantities in the “tail’D

_0 d
0:/ (ee—ee) dC
B 0z 0z
_ — . 0 d
= /(eAe—eAe)dQ — lim / (e—e —e—e) dC
D z—00 Jc 0z 0z
_0 0
= —lim / (ee - ee> dc. 32)
- Jo 0z 0z

The second line is obtained by integration by parts and the last follows from the faet tt
satisfies the homogeneous Helmholtz equatioD.in

Each propagating mode is outgoing and hence satisfies the radiation condition, wr
in integral form

. Jde .
O:ZILngO/C a—z—mnedc
del? _de oe
= lim — 2leP +iunle— —e— | | dC
ZLOO/C(‘az + uplel +|Mn< 32 8))
: sel> L
—le_[r;o/c(‘ﬁ + uplel )dC, (33)

where the third line follows from (32). For propagating mogiés> 0 so that
lim [ |e?dC=0 (34)

which completes the proof.
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3.2. Truncated DtN Maps
Let MN be the DtN magruncatedafter N terms. In two dimensions

N-1 b

MMy = < Y o [ VU 208y, O<y<b. (@)

n=0

Recall that the modes are ordered with descending eigenvafudén Case 2, Dirichlet
wall conditions, the first term is trivial so thatN containsN — 1 non-trivial terms.) In
three dimensions

N-1
MNu(x, y, z0) = —i Zun/vn(x, YYaX YU, Yy, o) dx'dy,  (x,y) e C.
JC

n=0
(36)
(In Case 2, Dirichlet wall conditions, trivial terms aggcludedrom the truncated map, in
contrast to the treatment in two dimensions. Thus, e.g., for Dirichlet wall conditions il
rectangular cross section with a constant wave number, the first and largest eigenva
pd = k2 — (r/a)? — (7/b)?, which isu?, in the double-index notation.)

Let v be the difference between two solutions of the probler@iwith the DtN map
replaced byMN. v is a solution of the homogeneous problem. Thus, we have a statemer
zero energy flux through the artificial boundary as before, this time in terms of the trunc:
map

/Im{lTMNv}dx dy=0. (37)
B
Again we employ modal decomposition
v=> AYa onB (38)
n=0
where
Ao = / YavdC. (39)
B

Consider the one-term approximatioN = 1) in three dimensions

Mu(x, Y, z0) = —iMo/ Yo(X, Y)Yo(X', y)v(X', Y, z0) dX' dy
C

= —ipoYo(X, y)/ Yo<, ¥) D> AcYa(X', y) dX dy
c n=0

= —ipoAoYo(X, y) (40)

by the orthonormality of the eigenfunctioifs. The condition of zero energy flux is

0= / Im{v(x, y, Z)Mu(x, y, zo)} dx dy
C

= lm{/c Y AnYa(x, V) (=i oAoYo) dx dy}
n=0

= —Im{i s20}| Aol*. (41)
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Similarly, for the N-term approximation, we obtain the condition

N-1

> Imiun}lAnl? = 0. (42)

n=0

The same procedure is used to derive an identical condition for the two-dimensional cas
previously stated, there may be a finite number of propagating modes, for mhiefR*;
there may be a single cutoff mode, for whighy =0; and there is an infinite number
of evanescent modes, for whichiu, € R™. The modes are ordered with descendin
eigenvaluesi2. Thus, the lowest modes are propagating modes, if any exist, followed
the cutoff mode, if it exists, and then the evanescent modes.

If there are no more thaN propagating modes, then condition (42) impligs= 0 for
those modes. The truncated DtN condition is a homogeneous Neumann condition on h
modes. This is exact for the cutoff mode, if it exists. There are no non-trivial solutic
associated with the evanescent modes. Thus, in this case the homogeneous proble
only trivial solutions, and uniqueness of the original solution is not impaired.

If, however, there are more thad propagating modes, then condition (42) implie:
A,=0only forn=0,..., N — 1. Non-trivial contributions to higher propagating mode:
of the homogeneous problem may exist, allowing non-unique solutions to occur.

Thus, the criterion for uniqueness is quite simple, selao thatu? < 0, i.e., all
propagating modes of the homogeneous problem are annihilated.

For constant wave numbers in a rectangular cross section, sufficient conditions
the truncated DtN map in terms of a double sum with indioes0,...,M —1 and
n=0,...,N—1are

M > ka/m and N > kb/x. (43)

This criterion is not sharp in the sense that it may include non-propagating modes ir
truncated operator. However, this criterion cannot be improved if fixed limits are emplo
on both indicesm andn. In Case 2, Dirichlet boundary conditions, fewer terms may k
taken

M>ka/mr —1 and N >Kkb/m — 1. (44)
For constant wave numbers in a strip we require
N > kb/7. (45)

For variable wave numbers the eigenvaluésre found numerically. For uniqueness, the
number of terms in the DtN map must be no less than the total number of positive eigenv:
(which is finite). For this reason a Sturm sequence check [2, p. 943] should be emplc
to verify that all positive eigenvalues are found. For a variable wave nuknbéda(y) in a
strip, the number of terms in the DtN operator sufficient to guarantee uniqueness me
conservatively estimated by

N > maxk(y)b/m (46)
O<y=<b

according to [8, p. 411].
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3.3. Local DtN Boundary Conditions

The truncated DtN map (in terms of a single sum, ordered with descending vajgs of
is exact for functions that consist of only the fildtmodes. We now derive local boundary
conditions that inherit this property. Consider a function that consists of thé\finsbdes.
(For Dirichlet boundary conditions trivial terms are excluded from the three-dimensio
treatment, e.g.p0= 11 in the double-index notation, and in two dimensions the fir:
mode,n =0, is trivial so that all appearances 4 must be dropped from the following
presentation.) On the artificial boundary

u= An Yn . (47)

The eigenfunction¥,, satisfy Eq. (7) and hence, feapnstantwave numbers
Ay = (12 = 1K3)' Y, (48)
where

AYy = AC..AAY) .. ) (49)

| times

is thelth power of the Laplacian i€. Thus we may write

Au=Y" (12-K) AYa  onB. (50)

N-1
u
E=|§MnAnYn onB. (51)

Comparing Egs. (50) and (51) suggests expressing the coefficients as linear combina

N-1

Mn=2ﬂ|(uﬁ—k2)', n=0,...,N—1, (52)
1=0

wherep, are obtained by solving this x N linear system. (For Dirichlet boundary con-
ditions in two dimensions, the first mode, and hence the first equation in (52), is trivial.
upper limit of N — 2 on the sum is employed in this case.) Substitution into (51) yields t
local expression, valid for constant wave numbers

N—-1
au
- =|§ﬂnA”u onB (53)

(again, with an upper limit oN — 2 for Dirichlet boundary conditions in two dimensions).
The one-term local approximation is

au
— =i onB 54
5, = MU (54)



DtN MAPS FOR UNBOUNDED WAVE GUIDES 211

and for the case of Dirichlet boundary conditions in two dimensions

g—; =ipgu on B. (55)
These one-term expressions are also valid for the more general case of wave numbe
vary within the cross section. An alternative approach [21] may be used to derive hig
order local boundary conditions for varying wave numbers.

As previously noted, unigueness of the solution corresponds to enforcing zero energy
through the artificial boundary, as in the first line of (41). Similarly, the difference betwe
two solutions to the DtN problem with a one-term local approximatigmust satisfy

0=/Im{ﬁuov}dC
B
= Im{iuo}/ lv|?dC. (56)
B

If the first mode is propagating, i.¢:2 > 0, then condition (56) implies that= 0 on3. In
addition,v satisfies the DtN boundary condition BnThusv satisfies homogeneous Dirich-
let and Neumann boundary conditions on the artificial boundary. This over-specificat
of boundary data precludes non-trivial solutions in the computational dofaaimhich
implies uniqueness of solutions with a one-term local boundary condition. Adding tel
to the local approximation cannot alter this statement. If this is a cutoff mode, then
local boundary condition is exact and higher modes are evanescent. Uniqueness is
issue if this mode is evanescent. Thus, uniqueness of the original solution is not imp:
in all cases, for any number of terms. (In the case of Dirichlet boundary conditions in-
dimensions, we substituje; for 1o and repeat the analysis.)

Our interest in local DtN boundary conditions is primarily as the basis of the modif
formulation that follows. The one-term local approximations are sufficient for this purpc
Numerical comparisons of global and local DtN conditions have been performed previo
[48] and are not repeated here. For completeness, the conclusions of these comparisc
summarized herein.

The global conditions are very robust. Moreover, once they are implemented in a fi
element code, one may use them very easily, taking into account any desired numbk
terms. Their main disadvantage is that they require computations on the global level, w
is contrary to the usual architecture of finite element codes.

On the other hand, local boundary conditions have the advantage that they are i
porated in a finite element code in the usual manner, i.e., on the element level. The)
also more amenable to parallelization than the nonlocal conditions. The low-order lo
ized conditions are simple, but not always sufficiently accurate, especially for small w
numbers. However, in the propagation regime, they are much more accurate than their
local counterpartsf equal orderin resolving the higher modes in the exact solution. Fc
problems where the first few modes are dominant, or where the wave number is large,
should be satisfactory.

The high-order localized conditions are more accurate. However, only the odd-order
lead to a stable numerical scheme. Also, they require the use of special finite elemer
the layer adjacent to the artificial boundary. The number of element degrees of free
increases rapidly with the order, considerably increasing the computational effort.
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3.4. Modified DtN Formulations

The truncated operator is modified so that solutions are unique for any number of te
based on [26]. The idea is to consider any boundary condition on the artificial bound
for which the problem in the computational domain is well posed, and add it to the hig
modes only. To achieve this goal the modifying boundary operator is added to the gl
DtN condition and subtracted from it. Only the subtracted part is truncated along with
original operator. We employ the one-term local approximation (valid for variable we
numbers) as the modifying operator. In three dimensions

N-1

ou . . N I\ /
o 02200 = THUX, Y. 20) +1 Y tn = 110) | Yol Y)Yal' YUK Y 200 8l
0z 1 c
(57)
In two dimensions
N-1 b
ou . . / /
— (¥, 20) = ipou(y. 2o) +1i Z(Mn—ﬂo)/ YoM Ya(Y)Uu(y', 20)dy  (58)
0z et 0
and for Dirichlet boundary conditions in two dimensions
N-1 b
ou . . / /
EWszmmmmH4§}m—uﬁAwmwmwwwmmw (59)
n=2

Uniqueness is not impaired for any number of terms since the one-term modified cond
is identical to the one-term local approximation.

3.5. Implementation

DtN boundary conditions are incorporated into finite element computation via the v
ational form of the boundary-value problem [14, 16, 19, 20, 23, 37, 47], see the third t
on the left-hand side of (30). The DtN contribution to the stiffness matrix is a truncat
and possible modification of

/ NAMNBdCZ—iZMnlAnIBn, (60)
B n=0
where
| = / NAY, dC (61)
B

and N, are standard finite element shape functions. The DtN contribution preserves
symmetry of the underlying finite element equations but couples all of the degree
freedom on the artificial boundary.

The cross-sectional eigenvalues and orthonormal eigenfunctions, needed to for-
mulate DtN boundary conditions, are presented explicitly in (18) and (19) for the cas:
constant wave numbers in a strip, and in (9)—(12) for the case of constant wave nun
in rectangular cross sections. (Recall, the double index notation is converted to singl
dex notation by simply ordering the modes with descending valugg o§tarting with

o = Moo-)
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In more general cases the cross-sectional eigenvalue problem is solved numerical
a finite number of eigenpairs. The resulting discrete eigenvalue problem is generally
positive definite since all propagating cross-sectional modes should be included in the
map for uniqueness. Care must be taken to compute these modes accurately. A shift
eigenvalues [36, pp. 574, 575] may be employed in order to make the problem def
and hence more amenable to treatment by commonly used eigenvalue solvers. The s
the discrete eigenvalue problem should be much larger than the number of terms req
which are the terms with the largest eigenvalues. Due to potential deterioration in the qu
of approximation of higher modes [51] the roles of the matrices of the discrete eigenv
problemK andM may be reversed [36, p. 579] for more accurate numerical solution
the larger eigenvalues and corresponding eigenvectors. A Sturm sequence check [2, [
(also known as spectrum slicing) should be employed to verify that no eigenvalues
missing.

4. NUMERICAL RESULTS

Numerical tests of the performance of the truncated and modified DtN condition:
various wave guide configurations are presented in the following. Convergence tests
performed in [22] and are not repeated here. Convergence rates of 2.006—2.00Z jn tf
norm and 0.981-0.986 in the! semi-norm were obtained in these tests for both glob
and local DtN conditions. These rates are optimal.

4.1. Constant Wave Number in a Strip

The following numerical results are for a two-dimensional unbounded wave guide
constant widthb, with Neumann wall conditions (Case 1). A varying Dirichlet bound
ary condition which satisfies the wall conditiogs— 2/37(%)2 4 20875(¥)3 — 21164 Y)4
%96(%)5 — %‘(%)5 is specified on the boundaryat 0, to excite significant contributions
to the first three cross-sectional modes. A computational domain, determined by sele
Zo = b/4, is meshed with 4& 20 bilinear rectangles.

The cross-sectional eigenvalug$ and orthonormal eigenfunctiong,(y), needed to
formulate DtN boundary conditions, are presented explicitly in (18) and (19) for the cas
constant wave numbers in a strip. The criterion for uniqueness is that the number of t
in the truncated DtN operatd¥ be such thau? < 0 (when the modes are ordered with
descending eigenvalues). For constant wave numbers this is equivaient tab/7 . This
criterion is verified with numerical results from the problem described above, for vari
wave numbers (Table 1), nameN, > kb/7 <= u% <O0.

TABLE 1
Verifying the Criterion for Uniqueness,
Constant Wave Number

kb kbyx No. of pos. eigenvalues
2 0.64 1

4 1.27 2

8 2.55 3

12 3.82 4

16 5.09 6
20 6.37 7
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FIG. 3. Dependence of the error on the number of terms in the truncated operator.

The effect of satisfying the criterion for uniqueness with the truncated boundary condi
is demonstrated in Fig. 3 for the same wave numbers as in Table 1. The relative error

h
u —u
£ I —ulg
lulls

in the L2(5) norm may be extremely high if the number of terms in the truncated Dt
operator is not sufficient for uniqueness. This is particularly evidekbat 8, 12, and 20,
with errors on the order of 300% and higher! The somewhat anomalous behduicsdt6
may be due to its highest propagating mgde= 5) having an eigenvalue close to zero.

As terms are added to the DtN condition the error decreases until it reaches a thre:
beyond which adding terms no longer improves the solution. This fact is due to the fi
number of significant modes in the boundary data. This behavior holds for all the w
numbers in Fig. 3, as well as for subsequent numerical tests.

The modified boundary condition is unique for any number of terms in the operator. -
error with the modified boundary condition remains relatively low (less than 30%) e\
when the criterion for uniqueness is not satisfied (Fig. 4).

We employ this problem to compare the global DtN conditions to known bound:
conditions: the Sommerfeld condition on the artificial boundary

ou
— —iku=0, tz= 63
5, —iku atz=z (63)

(which is identical to the lowest-order condition of many schemes, including the one-t
local DtN conditions) and the second-order Engquist—-Majda scheme [9], which is
au . i 9%u
0z 2k 9y2

(62)

=0, atz=1z (64)
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FIG. 4. Comparison of truncated and modified operators.

in the configuration considered. The real parts of the result&lier 4 are compared to
the analytical solution in Fig. 5. The Sommerfeld condition and the one-term global [
condition (which is insufficient for uniqueness) provide poor results. The situation impro
considerably for the Engquist—-Majda and the three-term global DtN conditions. Three te
are sufficient for uniqueness of DtN in this case (see Table 1), and there is little differe
in the performance of truncated and modified DtN, when there are sufficient terms
uniqueness (Fig. 4). Adding terms to the global DtN condition gives results that are ba
distinguishable from the analytical solution.

Comparisons to the Bayliss—Turkel conditions [4, 5] were performed in [22] and
not repeated here. Only the first two Bayliss—Turkel boundary conditions are compa
with finite elements. The one-term local DtN condition is much more accurate than the
Bayliss—Turkel condition for all wave numbers. For small wave numbers, the solution ok
ned with the one-term local DtN condition is also much more accurate than that obtained
the second Bayliss—Turkel condition. In the intermediate range, the second Bayliss-Ti
condition is slightly more accurate. For large wave numbers the errors obtained with
two conditions are similar.

4.2. Linearly Varying Wave Number in a Strip

The following results are obtained for the problem described above, with linearly vary
wave number& = kq + (k, —Kq)y/b. The cross-sectional eigenvalyesand orthonormal
eigenfunction¥,(y), needed to formulate DtN boundary conditions, are found numerica
in this case, by using a standard eigenvalue solver for a one-dimensional eigenvalue prc
discretized with 400 degrees of freedom. A Sturm sequences check [2, p. 943]is employ
verify that no eigenvalues are missing. The accuracy of the modes employed is establ
by numerical convergence studies. Numerical integration of (61) is performed in e
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FIG.5. Comparison of boundary conditions along the artificial boundary.

element by the trapezoidal rule with sufficient points to account for the oscillatiovis of
The linear variation ok within each element is accounted for in computing the eleme
stiffness matrix.

Recall the criterion for uniqueness, that the number of terms in the truncated DtN opel
N be such thauZ < 0 (when the modes are ordered with descending eigenvalues)
conservative estimate for the case of linearly varying wave numbirsisnax{ky, k,}b/7.
This estimate is verified with numerical results from the problem described above,
various values of the parameters with> kq (Table 2), namelyN > k,b/7 = u2, < 0.
Note that the eigenvalue of the most oscillatory mode is bounded by the limit values of
varying wave humbeky < o < ky.

TABLE 2
Verifying the Criterion for Uniqueness, Linearly Varying Wave Number

kgb k.,b ob k,b/m No. of pos. eigenvalues
2 4 3.20 1.27 1
2 8 6.64 2.55 2
2 12 10.34 3.82 3
2 16 14.10 5.09 3
2 20 17.92 6.37 4
6 8 7.34 2.55 3
6 12 10.82 3.82 3
6 16 14.50 5.09 4
6 20 18.24 6.37 5
10 12 11.42 3.82 4
10 16 14.92 5.09 5
10 20 18.60 6.37 5
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FIG. 6. Dependence of the error on the number of terms in the truncated opéqgict 2).

The effect of satisfying the criterion for uniqueness with the truncated boundary condi
is demonstrated in Figs. 68 for the same wave numbers as in Table 2. The relative
may be quite high if the number of terms in the truncated DtN operator is not sufficient
unigueness.

4.3. Constant Wave Number in a Square Cross-section

The following numerical results are for a three-dimensional unbounded wave guid
square cross sectican=b, with Neumann wall conditions (Case 1). A varying Dirich-
let boundary condition which satisfies the wall conditigh8(%)? — 32(%) + 24(%)* —
TENEE? - 3§ — A7 - SHEE? - F(§)* + 4" s specified on the
boundary arz = 0, to excite significant contributions to the first three cross-sectional mod
A computational domain, determined by selectigg= b/2, is meshed with 14 14 x 7
trilinear cubes.

The cross-sectional eigenvalye$ and orthonormal eigenfunctioi (x, y), needed to
formulate DtN boundary conditions, are presented explicitly in (9)—(12) for the case
constant wave numbers in rectangular cross sections. Recall, this double index notat
converted to single index notation by simply ordering the modes with descending va
of u2, starting withjuo = ioo. Table 3 shows the correspondence of the first nine cros
sectional terms in a square. Due to the symmetry of eigenfunctions in a s¥yaee,Ynm
the ordering of terms 1 and 2, terms 4 and 5, and terms 6 and 7 can be reversed.

The criterion for uniqueness is that the number of terms in the truncated DtN oper
N be such tha]u,ﬁ < 0. For constant wave numbers in a square cross section, suffici
conditions for the truncated DtN map expressed in terms of a double sum with ind
m=0,...,M—1landn=0,...,N —1areM? + N2> (ka/x)>.
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FIG. 8. Dependence of the error on the number of terms in the truncated opé¢dice 10).
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TABLE 3

Correspondence of Double- and
Single-Index Notations for Cross-

sectional Modes in a Square

(m,n)

=}

0,0)
(1,0)
0.1
(1.1
(2.0)
0.2)
(21
(1.2)
(2.2)

o ~NOOOA~ WNEO
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tion is demonstrated in Fig. 9. For wave numblkes 0, 2, 4, and 6 the number of terms

requiredisN =1, 4, 6, and 19 (see, e.g., Table 3). The relative error may be extremely h
(approaching 1,000%!) if the number of terms in the truncated DtN operator is not suffic
for uniqueness. The modified boundary condition is unique for any number of terms in
operator. The error with the modified boundary condition remains relatively low (less tl

30%) even when the criterion for uniqueness is not satisfied (Fig. 9).

1.0

05

Standard nonlocal DtN

Modified DiIN

kb=12
kb=8
kb=4
-25 kb=0
-3.0 [
_3‘5 1 1 |
(0,0) (1.1 (2,2) (3,3) (4,4)
(M,N)

FIG. 9. Dependence of the error on the number of terms in the truncated and modified operators.
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FIG. 10. Dependence of the error (with varying wave number) on the number of terms in the trunce
operator.

4.4. Linearly Varying Wave Number in a Square Cross-section

The following results are obtained for the problem described above, with a linee
varying wave numbek = ko(x + y)/a, wherekob = 2. The cross-sectional eigenvalyes
and orthonormal eigenfunctiolfg(x, y), needed to formulate DtN boundary conditions, ar
found numerically in this case, by using a standard eigenvalue solver for a two-dimensi
eigenvalue problem discretized with a uniform mesh 08335 nodes for a total of 1225
degrees of freedom. A Sturm sequence check [2, p. 943] is employed to verify tha
eigenvalues are missing. The accuracy of the modes employed is established by num
convergence studies. Numerical integration of (61) is performed in each element by
trapezoidal rule with sufficient points to account for the oscillationsr,pf The linear
variation ofk within each element is accounted for in computing the element stiffne
matrix.

In this problem there is a single positive eigenvalue. Thus, there is always a suffic
number of terms in the DtN boundary condition and the relative error remains relativ
low (less then 20%), see Fig. 10.

5. CONCLUSIONS

This work presents the derivation and analysis of DtN formulations for unbounded w
guides in two and three dimensions. DtN boundary conditions, relating the solution tc
normal derivative on an artificial boundary, define problems in bounded domains that
suitable for finite element analysis. Explicit expressions are obtained for constant v
numbers in strips and in rectangular cross sections (the extension to circular cross se«
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is straightforward). The boundary conditions are derived numerically for wave numt
varying in the cross section, and for cross sections of general shape in three dimensic

The bounded-domain problem obtained by employing the DtN procedure is analy
in its continuous form, prior to discretization. The DtN operator is expressed in the fc
of infinite series. The solution of the bounded-domain problem with the full operator i
restriction of the solution to the original problem to the bounded domain. The truncated |
operator, which is employed in practice, fails to inhibit higher modes, so that nonuni
solutions may occur. Simple criteria determine a sufficient number of terms in the trunc
operator for unique solutions at any given wave number. Local approximations of
boundary conditions for constant wave numbers yield uniqueness for all wave numlt
A simple modification of the truncated operator by the lowest-order local approximati
which is valid for varying wave numbers, leads to boundary conditions that are unique
any number of terms in the operator.

Numerical results validate the performance of the DtN boundary conditions for w
guides in two and three dimensions and confirm the criteria for uniqueness. In partic
the truncated and modified conditions perform similarly as long as there are sufficient te
for the truncated condition to yield unique solutions. Otherwise, the modified conditiol
superior, as expected.
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